
Introduction

The mountain lakes of the Chilean Araucanian Andes 
(38-39ºS) are oligotrophic, of glacial or volcanic origin. 
They are associated with native Nothofagus Blume forest, 
particularly N. antarctica (G. Forst.) Oerst., N. pumilio 
(Poepp. et Endl.) Krasser, and N. dombeyi (Mirb.) Oerst. 
At altitudes greater than 1,000 m a.s.l., these species 
coexist with Araucaria araucana (Molina) K. Koch, 
between 38-39ºS [1-3]. Some of these lakes have marked 
volcanic influence because there are active volcanos, such 
as Llaima, that can expulse their ashes to the surrounding 

landscapes, consequently affecting inland water bodies 
[4-5]. Ash from other distant volcanoes also can affect 
the study area, such as Cordón Caulle [6]. The aim of 
the present study is to compare spectral properties data 
obtained from LANDSAT  ETM+ in lakes surrounding 
Llaima Volcano, specifically Icalma and Galletué 
lakes, and lagoons located within Conguillio National 
Park (Conguillio, Verde, Arcoiris, and Captrén). Lakes 
Galletué and Icalma have similar characteristics in depth 
and surface, whereas the lagoons in Conguillío National 
Park are small and shallow. From these lagoons Verde and 
Arcoiris are the lowest [2], with Verde having volcanic 
material and Arcoiris having submerged vegetation.

Remote sensing allows us to measure reflectance 
value in oceans, lakes, and rivers using the measurement 
of reflected light [7-9]. For wavelengths from infrared the 
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measurements correspond exclusively to water surface, 
whereas in visible wavelengths these are related to water 
volume due to more light penetrating into water for these 
wavelengths for meters of penetration [10-12].

Material and Methods

Remote Sensing Procedures

In this step a LANDSAT/ETM+ image is used to 
obtain dated lakes of Icalma and Galletué and lagoons 
located within Chile’s Conguillio National Park (Fig. 1 
and Table 1). This image is dated 12 January 2012 and 
is provided by the Land Processess Distributed Active 
Archive Center (LP DAAC) of the U.S. Geological Survey 
(LPDAAC.usgs.gov). The scene corresponds to path/row 

233/087, Landsat series. Additionally, two other Landsat/
ETM+ images were used, dated from 6 January 2010 and 
9 January 2011.

The spectral and spatial characteristics of the ETM+ 
sensor are presented in Fig. 2 and Table 2. The bands 
of visible, near, and mid-infrared were calibrated 
radiometrically to spectral radiance and then to reflectance 
with atmospheric correction being applied (Table 3). 
Data analysis: 2012 reflectance was applied to principal 
correspondence analysis to obtain the grouping for 
sampled sites. This statistical analysis was applied using 
Analyse-it software based on the methodology used for 
Patagonian lakes [13].

Results and Discussion

Correlation analysis (Pearson correlation test) to 2012 
data revealed direct significant correlations between B1 

Fig. 1. Study area: North Patagonian Chile (from Native Forest Census – CONAF 2013).

Table 1. Geographical locations and areas of studied lakes.

Lake Location Surface area 
(km2)

Arcoiris 38° 40’ S; 71° 37´W 0.036

Captrén 38° 38’ S; 71° 42’ W 0.080

Conguillío 38° 40’ S; 71° 37’ W 8.422

Galletué 38° 40’ S; 71° 15’ W 12.366

Icalma 38° 40’ S; 71° 15’ W 9.940

Icalma Chica 38° 40’ S; 71° 15’ W 2.031

Verde 38° 40’ S; 71° 37’ W 1.861 Fig. 2. Relative spectral response, sensor ETM+/Landsat-7.
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with B2 (R2 = 0.991, p<0.05), B1 with B3 (R2 = 0.932, 
p<0.05), B1 with B4 (R2 = 0.790, p<0.05), B2 with B3 
(R2 = 0.955, p<0.05), B2 with B4 (R2 = 0.797, p<0.05), 
B2 with B5 (R2 = 0.755, p<0.05), B3 with B4 (R2 = 
0.852, p<0.05), B3 with B5 (R2 = 0.814, p<0.05), B3 
with B7 (R2 = 0.794, p < 0.05), B4 with B5 (R2 = 0.995, 
p<0.05), B4 with B7 (R2 = 0.994, p<0.05), and B5 with 
B7 (R2 = 0.995, p<0.05) (Table 4). PCA revealed that 
all variables contributed to axis 1, whereas B1, B2, and 
B3 made a positive contribution to axis 2 while B4, B5,  
and B7 made a negative contribution to axis 2 (Table 5, 
Fig. 3). This may be due to the different light penetration 
in water of visible (bands 1, 2, 3) and infrared wavelengths 
(bands 4, 5, 7).

The results of PCA revealed that Verde Lagoon – and 
partially Conguillio Lagoon and Icalma Lake – have high 
reflectance for B1, B2, and B3, and low reflectance for B4, 
B5, and B7, whereas Arcoiris, Icalma Chica, and Captrén 
lagoons and Galletué Lake (Fig. 1) have low reflectance 
for B1, B2, and B3 and high reflectance for B4, B5, and 
B7.

The present study revealed differences in optical 
properties for studied lakes that could be denoted using 
remote sensing techniques such as were observed 
for Patagonian lakes with marked environmental 

heterogeneity such as was observed for lakes Tagua Tagua 
and General Carrera [13-15]. 

The environmental heterogeneity for Patagonian lakes 
has been described in details mainly regarding trophic 
status and associated basins [16-18], but recently was 
studied using optical properties associated with ecological 
implications due to the presence of associated glaciers 
with consequent changes in water coloration properties, 
light absorption, and changes in associated trophic webs 
[19-21], and these results would be associated with optical 
properties obtained from satellite images [13-15].

All of the studied sites are associated with the volcanic 
activity of Cordón Caulle and Llaima volcanoes. The 
Caulle Cordon began in the middle of 2011 with sustained 
emissions of volcanic ash until early 2012. This ash 
often covered the area of Conguillio National Park and 
surrounding zones. Llaima Volcano had weak eruptive 
activity in early 2012. The ash plumes of both volcanoes 
affect all surrounding ecosystems for studied sites [20]. 
Also, the sites included in Conguillio National Park feature 
the geological characteristic of having many volcanic 
stones along their bottoms, such as was observed for Verde 
and Arcoiris lagoons [5]. Also, in Arcoiris Lagoon the  
high infrared reflectance values are related to the presence 
of high quantities of submerged vegetation. In this 
scenario, there is potential correlation between optical, 
chemical, and trophic status with a consequent response 
regarding the biological characteristics of the ecosystem 
[13-15, 22].

Table 2. Technical characteristics of the Landsat7/ETM+ sensor.

Band Spectral range 
(µm)

Wavelength 
center (µm) GSD (m)

PAN 0.520-0.900 0.720 15

1 0.450-0.515 0.479 30

2 0.525-0.605 0.561 30

3 0.630-0.690 0.661 30

4 0.775-0.900 0.835 30

5 1.550-1.750 1.650 30

6 10.40-12.50 11.450 60

7 2.090-2.350 2.208 30

Table 3. Reflectance for studied lakes (2010-12).

B1 (%) B2 (%) B3 (%) B4 (%) B5 (%) B7 (%)

Lake 2010 2011 2012 2010 2011 2012 2010 2011 2012 2010 2011 2012 2010 2011 2012 2010 2011 2012

Arcoiris 2.79 2.96 2.71 3.21 3.03 2.29 3.73 3.45 2.46 6.54 6.02 2.78 5.18 5.38 4.04 4.53 5.84 4.13

Captrén 3.24 2.82 1.75 3.48 2.99 1.38 3.12 2.65 1.31 4.27 3.80 0.74 3.23 2.65 1.32 2.71 2.33 0.20

Conguillío 3.02 2.86 2.13 2.72 2.47 1.62 2.14 2.15 1.26 2.39 2.25 0.62 2.27 2.03 1.01 2.21 1.98 0.13

Galletué 2.12 2.59 1.62 1.98 2.43 1.25 2.14 2.43 0.93 2.04 2.58 0.57 2.27 2.42 0.88 2.21 2.28 0.12

Icalma 2.12 2.63 2.01 1.98 2.41 1.64 2.14 2.43 1.18 2.04 2.60 0.63 2.27 2.46 1.06 2.21 2.28 0.21

Icalma 
Chica 1.90 2.65 1.82 1.98 2.56 1.44 1.91 2.53 1.10 1.69 2.75 0.63 1.95 2.58 1.15 2.21 2.36 0.22

Verde 3.02 3.79 2.39 2.96 3.58 2.03 2.59 2.87 2.02 2.74 2.91 0.86 2.58 2.58 1.16 2.51 2.47 0.21

Table 4. Correlation matrix for variables considered in the present 
study (values in bold denote significant correlation; p<0.05).

B1 B2 B3 B4 B5

B6 0.749 0.751 0.794 0.994 0.995

B5 0.750 0.755 0.814 0.995

B4 0.790 0.797 0.852

B3 0.932 0.955

B2 0.991
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Conclusion

It is possible to use satellite reflectance data to monitor 
the chemical and trophic status of lakes and lagoons. This 
information detects not exclusively differences related to 
physical features of the lakes, and also recognizes changes 
of water reflectance generated by ash fall from volcanic 
plumes. For example, for Arcoiris, Captrén, and Verde in 
three analyzed data (Table 2), their infrared reflectance 
values were permanently higher in comparison to other 
lakes and lagoons, which is due to their low surface and 
depth. Also, the reflectance value of lakes and lagoons 
showed a strong decrease in 2012, corresponding to the 
effect of volcanic ash fall from the Caulle cordon eruption 
and Llaima volcano eruption. 

The results presented indicate a potential correlation 
between environmental associations due to surrounding 
basins and that optical properties might possibly be found 
[23]; however it would be necessary to carry out more 
intensive studies and obtain more data to be able to confirm 
or discount the possibility of finding potential correlations 
and their variation at multiple spatial and temporal scales 
[24].
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